Quasicompact and Riesz unital endomorphisms of real Lipschitz algebras of complex-valued functions

نویسندگان

  • Davood Alimohammadi Department of Mathematics, Faculty of Science, Arak University, Arak 38156-8-8349, Iran.
  • Maliheh Mayghani Department of Mathematics, Payame Noor University, P. O. Box: 19359-3697, Tehran, Iran.
چکیده مقاله:

We first show that a bounded linear operator $ T $ on a real Banach space $ E $ is quasicompact (Riesz, respectively) if and only if $T': E_{mathbb{C}}longrightarrow E_{mathbb{C}}$ is quasicompact  (Riesz, respectively), where the complex Banach space $E_{mathbb{C}}$ is a suitable complexification of $E$ and $T'$ is the complex linear operator on $E_{mathbb{C}}$ associated with $T$. Next, we prove that every unital endomorphism of real Lipschitz algebras of complex-valued functions on compact metric spaces with Lipschitz involutions is a composition operator. Finally, we study some properties of quasicompact and Riesz unital endomorphisms of these algebras.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions

We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.

متن کامل

Weighted composition operators between Lipschitz algebras of complex-valued bounded functions

‎In this paper‎, ‎we study weighted composition operators between Lipschitz algebras of complex-valued bounded functions on metric spaces‎, ‎not necessarily compact‎. ‎We give necessary and sufficient conditions for the injectivity and the surjectivity of these operators‎. ‎We also obtain sufficient and necessary conditions for a weighted composition operator between these spaces to be compact.

متن کامل

Riesz endomorphisms of Banach algebras

Let B be a unital commutative semi-simple Banach algebra. We study endomorphisms of B which are simultaneously Riesz operators. Clearly compact and power compact endomorphisms are Riesz. Several general theorems about Riesz endomorphisms are proved, and these results are then applied to the question of when Riesz endomorphisms of certain algebras are necessarily power compact.

متن کامل

Some Properties of Vector-valued Lipschitz Algebras

‎ Let $(X,d)$ be a metric space and $Jsubseteq (0,infty)$ be a nonempty set. We study the structure of the arbitrary intersection of vector-valued Lipschitz algebras, and define a special Banach subalgebra of $cap{Lip_gamma (X,E):gammain J}$, where $E$ is a Banach algebra, denoted by $ILip_J (X,E)$. Mainly, we investigate $C-$character amenability of $ILip_J (X,E)$.

متن کامل

compact composition operators on real banach spaces of complex-valued bounded lipschitz functions

we characterize compact composition operators on real banach spaces of complex-valued bounded lipschitz functions on metric spaces, not necessarily compact, with lipschitz involutions and determine their spectra.

متن کامل

On the character space of vector-valued Lipschitz algebras

We show that the character space of the vector-valued Lipschitz algebra $Lip^{alpha}(X, E)$ of order $alpha$ is homeomorphic to the cartesian product $Xtimes M_E$ in the product topology, where $X$ is a compact metric space and $E$ is a unital commutative Banach algebra. We also characterize the form of each character on $Lip^{alpha}(X, E)$. By appealing to the injective tensor product, we the...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 09  شماره 1

صفحات  1- 14

تاریخ انتشار 2018-01-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023